设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
#include<iostream> #include<fstream> using namespace std; #define MAX 100 #define MAXCOST 0x7fffffff int graph[MAX][MAX]; int prim(int graph[][MAX], int n) { int lowcost[MAX]; int mst[MAX]; int i, j, min, minid, sum = 0; for (i = 2; i <= n; i++) { lowcost[i] = graph[1][i]; mst[i] = 1; } mst[1] = 0; for (i = 2; i <= n; i++) { min = MAXCOST; minid = 0; for (j = 2; j <= n; j++) { if (lowcost[j] < min && lowcost[j] != 0) { min = lowcost[j]; minid = j; } } cout << "V" << mst[minid] << "-V" << minid << "=" << min << endl; sum += min; lowcost[minid] = 0; for (j = 2; j <= n; j++) { if (graph[minid][j] < lowcost[j]) { lowcost[j] = graph[minid][j]; mst[j] = minid; } } } return sum; } int main() { int i, j, k, m, n; int x, y, cost; ifstream in("input.txt"); in >> m >> n;//m=顶点的个数,n=边的个数 //初始化图G for (i = 1; i <= m; i++) { for (j = 1; j <= m; j++) { graph[i][j] = MAXCOST; } } //构建图G for (k = 1; k <= n; k++) { in >> i >> j >> cost; graph[i][j] = cost; graph[j][i] = cost; } //求解最小生成树 cost = prim(graph, m); //输出最小权值和 cout << "最小权值和=" << cost << endl; system("pause"); return 0; } |
i=j的时候 graph【i】【j】的值应赋值为0,不是MAX。
嗷嗷,谢谢啦
不是赋值为正无穷呢?