题目表述
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
思路
使用动态规划来求解,算法时间复杂度O(n^2)。
dp[i][j] : 以(i, j)为右下角的面积最大的正方形的边长。
初始条件:最上面一行,最左边一列,可以直接得到dp值。
更新公式:matrix[i][j] == '0' - > dp[i][j] = 0
matrix[i][j] == '1' - > dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1]) + 1
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
#include<iostream> #include<vector> const int _MAX = 10; using namespace std; char matrix[_MAX][_MAX]; int dp[_MAX][_MAX]; int min3(int a, int b, int c){ a = a < b ? a : b; return a < c ? a : c; } int main(){ int n, m; cin>>n>>m; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ cin>>matrix[i][j]; } } int res = 0; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ if(matrix[i][j] == 1)dp[i][j] = 1; else dp[i][j] = 0; } } for(int i = 1; i < n; i++){ for(int j = 1; j < m; j++){ if(matrix[i][j] == '1'){ dp[i][j] = min3(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1; res = res > dp[i][j] ? res : dp[i][j]; } } } cout<<res * res<<endl; return 0; } /* 4 5 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 */ |