问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
4 6 8
样例输出
7 9 9
样例说明
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
保证所有小球的初始位置互不相同且均为偶数。
保证所有小球的初始位置互不相同且均为偶数。
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
#include<iostream> #include<vector> using namespace std; class Ball{ public: int position; bool lorr = true; }; int main() { int L; int n; int time; cin>>n>>L>>time; vector<Ball> vec; for(int i=0;i<n;i++){ Ball temp; int temp_p; cin>>temp_p; temp.position=temp_p; vec.push_back(temp); } for(int i=0;i<time;i++){ for(int j =0; j<vec.size();j++){ if(vec[j].position == L){ vec[j].lorr = false; }else if(vec[j].position == 0){ vec[j].lorr = true; } for(int k=0;k<vec.size();k++){ if(vec[j].position == vec[k].position){ if(vec[j].lorr==false){ vec[j].lorr = true; vec[k].lorr = false; } else{ vec[j].lorr = false; vec[k].lorr = true; } break; } } } for(int j=0;j<vec.size();j++){ if(vec[j].lorr==true){ vec[j].position++; } else{ vec[j].position--; } } } for(int i =0;i<vec.size();i++){ cout<<vec[i].position<<" "; } return 0; } |