马尔科夫毯(Markov Blankets)

提到马尔可夫毯,就会有一堆从名字上看很相近的概念,比如马尔可夫链(Markov Chain, MC)、隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(MarkovRandom Field, MRF)等等。其实,马尔可夫毯与这些概念不同,它是一个局部的概念,而不是一个整体模型级别的概念。以下内容主要参考【何宪. 基于贝叶斯网络的马尔可夫毯发现算法研究[D]. 电子科技大学, 2012.】,更多内容请参阅原文献。

首先看马尔可夫毯的定义:

这种纯符号的定义看起来有些抽象,形象一点说,把一个随机变量全集U分成互斥的三部分,变量X以及集合A和B,三个子集没有交集,并集即为全集U;如果说给定集合A时,变量X与集合B没有任何关系,则称集合A为变量X的马尔可夫毯。在式(2-16)中,集合MB即为我说的集合A,{U-MB-{X}}即为我说的集合B,符号“⊥”表示“独立”,符号“|”表示在给定xx条件下,因此式(2-16)可读为“在给定集合MB时,变量X与{U-MB-{X}}独立”。

打个比方说,全集U是整个社会,X是你个人,MB就是你生活圈子里的人。按照哲学的说法,万事万物都是有联系的;但是,你并不会与社会里的所有人有什么关系,而是通过你的生活圈子和他们有间接的关系,即当给定你的生活圈子以后,你和社会其余的人是没啥关系的(独立的)。

维基百科:

留下评论

您的邮箱地址不会被公开。 必填项已用 * 标注